Inspired by Paul Groves

4.

 There are two driving forces for reactions. Reactions tend toward: minimum Enthalpy, ∆H (heat energy)

> $\Delta H -$, $\Delta H < 0$, downhill maximum **Entropy**, ΔS (randomness) $\Delta S +$, $\Delta S > 0$, uphill

- **2.** Recognize whether $\Delta S > 0$ or < 0 Entropy increases, $\Delta S +$, $\Delta S > 0$:
 - from solid to liquid to gas
 - fewer moles (g) to more moles (g)
 - simpler molecules to more complex molecules
 - smaller molecules to longer molecules
 - ionic solids with strong attractions to ionic solids with weaker attractions
 - separate solute & solvent to solutions
 - gas dissolved in water to escaped gas
- 3. Product or Reactant favored reactions depend on ΔH , ΔS , and absolute Temp

$\Delta \mathbf{H}$	$\Delta \mathbf{S}$	Product-Favored
+	+	at higher
		temperatures
	_	at lower
_		temperatures
	+	at all
_		temperatures
1	_	never
+		(reactant-favored at all temps)

	∆H <o< th=""><th colspan="2">AH ≻O</th></o<>	AH ≻O	
<u>∆</u> s 7 0	spontaneous at all T (GG<0)	Spontaneous at highT (when TAS is large)	
7210	Spontaneous at low T (when TAS is small)	Non-spontaneous at all T (DG>O)	

A BLUFFER'S GUIDE

5. Many books use the term "spontaneous" for "product-favored."

A spontaneous reaction does not necessarily mean a fast reaction. The SPEED of a reaction is Kinetics...we are discussing whether a reaction CAN OCCUR which is Thermodynamics.

6. Gibbs Free Energy, ΔG , puts the effects of ΔH , ΔS , and Temperature together.

$$\Delta \mathsf{G} = \Delta \mathsf{H} - \mathsf{T} \Delta \mathsf{S}$$

 Δ G<0, Δ G -, product-favored reaction Δ G>0, Δ G +, reactant-favored reaction Δ G=0, reaction is at equilibrium

Note that ΔH is usually in kJ/mol ΔS is usually in J/mol·K

ΔH_{sys} -T ΔS_{sys} = ΔG_{sys}					
Δ H	ΔS	ΔG	At		
exothermic	+ more disorder	- ALWAYS spont.	Any temp		
+ endothermic	less disorder	+ NEVER spont.	Any temp		
– exothermic	less disorder	spont.	Low Temp		
e xothermic	less disorder	↓ NOT spont.	High Temp		
+ endothermic	+ more disorder	spont.	High Temp		
+ endothermic	+ more disorder	↓ NOT spont.	Low Temp		